Seascape Genomics: Conservation Genetics of Elasmobranchs

Les Noble

Cathy Jones, James Thorburn, Michelle Frost, Lilian Lieber, Rachel Ball (Aberdeen University), Francis Neat, Peter Wright (MSS)

David Bailey (Glasgow University), David Sims (MBA)

Jackie & Graham Hall (MBSW), Suz Henderson (SNH)

Simon Berrow (GMIT)
Seascape Genetics: Integrating Molecular data & Spatial Ecology

Genetic Structure Analysed in Relation to Landscape Features

Spatial and Genetic Data

GIS/Spatial Statistics

Seascape Ecology

Seascape Genetics

Conservation Genetics

Popn health, assessed by immune genes, pollution indicators etc

(Adapted from: Andrew Storfer)
Why elasmobranchs?

Predators are bellwethers of health. 'Endangered' stocks are heavily fished, slowing life histories. Spatial/social ecology and Philopatry/area association are vulnerable to local adaptation within Familial groupings. Evidence of marine stressors, plastics/EDCs (reproduction/feeding), and EMF? climate change.

Why elasmobranchs?
SEX BIASED DISPERSAL IN GREAT WHITE SHARKS?

tag recaptures indicate residential groups of spur-dog & common skate in sea lochs.

Proposed MPA's

Spur dogs in Loch Etive

Common skate in the Sound of Jura, Crinan loch
Thermal niches?

Image adapted from: Aleynik et al, 2012, Oxygen dynamics in basins with restricted exchange: A case study of a Scottish fjord (Loch Etive, NW Scotland)
Top predators
bellwethers of health

‘Endangered’
stocks heavily fished
slow life histories

Spatial/social ecology
Philopatry/area association = vulnerable
Local adaptation
Familial groupings
Ne

Evidence of marine stressors
plastics/EDCs
(reproduction/feeding), EMF?
climate change
Relatedness within aggregations

Average group relatedness higher than expected under random expectations

Familial Aggregations?

Higher level of relatedness

Lower level of relatedness
Why elasmobranchs?

- Top predators
- Bellwethers of health
- ‘Endangered’
 - Stocks heavily fished
 - Slow life histories

Spatial/social ecology
- Philopatry/area association = vulnerable
- Local adaptation
- Familial groupings
- Ne

Evidence of marine stressors
- Plastics/EDCs
- (Reproduction/feeding), EMF?
- Climate change
Why elasmobranchs?

Top predators
bellwethers of health

‘Endangered’
stocks heavily fished
slow life histories

Spatial/social ecology
Philopatry/area association = vulnerable
Local adaptation
Familial groupings
Ne

Evidence of marine stressors
plastics/EDCs
(reproduction/feeding), EMF?
climate change
Commercial
Potential important fisheries

Public interest
presently support MPAs; priority marine features eg west coast

Timely and current
increasing genomic/transcriptomic tools, integrating data with physical tagging
gene-environment interactions

Why now?
Cornish fishermen challenge ‘nonsensical’ EU spurdog management
Why now?

Commercial
Potential important fisheries

Public interest
presently support MPAs; priority marine features eg west coast

Timely and current
increasing genomic/transcriptomic tools, integrating data with physical tagging
gene-environment interactions
The not so common skate

- World’s largest skate
- Life history characteristics mostly unknown
- Highly K-selected & vulnerable from time of hatching
- Critically endangered (IUCN 2011); UK BAP*; OSPAR List**; Scottish priority marine feature for MPA designation
- Distribution: NW Scotland, Celtic Sea & Rockall plateau

*UK Biodiversity Action Plan Priority Species, **OSPAR List of Threatened and/or Declining Species
MPAs: How will the common skate benefit?

- The sole presence of *D. intermedia* strengthened MPA proposal
- Area is now a designated MPA for the common skate
- Is there one connected & genetically uniform stock *or* a collection of isolated, unique populations?
- Will static MPAs protect the genetic diversity of a potentially highly mobile species?

Loch Sunart to Sound of Jura MPA
Why now?

Commercial
Potential important fisheries

Public interest
presently support MPAs; priority marine features eg west coast

Timely and current
increasing genomic/transcriptomic tools, integrating data with physical tagging

gene-environment interactions
What’s available?

Samples
gonads, blood, liver, muscle, fin clips, parasites, morphometrics, guts, slime
Overcoming the Problem – not so simple!

Tissue Samples
- Hard to get - Only 80 available

Mucus sampling – the way to go!
- Relatively non-invasive
- Cost-Effective
- Minimal Disturbance
- 400 global samples
- Allowed for the development of 19 microsatellite loci
- 44 SNPs (800+ available)

Basking shark connectivity, behaviour & condition
What’s available?

Samples
gonads, blood, liver, muscle, fin clips, parasites, morphometrics, guts, slime

World wide sampling
15 years investment

Ego?
GSoH, Gregarious
Why elasmobranchs?

Commercially important

What's available?

Samples
gonads, blood, liver, muscle, fin clips, parasites, morphometrics, guts, slime

World wide sampling
15 years investment

Ego?
GSoH, Gregarious